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Abstract. The principle of maximum entropy (POME) can be used to develop vertical soil mois-

ture profiles. The minimal inputs required by the POME model make it an excellent choice for

remote sensing applications. Two of the major input requirements of the POME model are the

surface boundary condition and profile-mean moisture content. Microwave-based soil moisture esti-

mates from Advanced Microwave Scanning Radiometer (AMSR-E) can supply the surface boundary5

condition whereas thermal infrared-based moisture estimated from the Atmosphere Land Exchange

Inverse (AELXI) surface energy balance model can provide the mean moisture condition. A disag-

gregation approach was followed to downscale coarse resolution (∼25 km) microwave soil moisture

estimates to match the finer resolution (∼5 km) thermal data. The study was conducted over mul-

tiple years (2006-2010) in the southeastern United States. Disaggregated soil moisture estimates10

along with the developed profiles were compared with the Noah land surface model (Noah LSM)

within the framework of NASA Land Information System (LIS), as well as in-situ measurements

from 10 Natural Resource Conservation Services (NRCS) Soil Climate Analysis Network (SCAN)

sites spatially distributed within the study region. The overall disaggregation results at the SCAN

sites indicated that in most cases disaggregation improved the temporal correlations with unbiased15

root mean square errors in the range of 0.01-0.09 in volumetric soil moisture. The profile results at

SCAN sites showed a mean bias of 0.03 and 0.05; unbiased RMSE of 0.05 and 0.06; and correlation

coefficient of 0.44 and 0.48 against SCAN observations and Noah LSM, respectively.
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1 Introduction

Although soil moisture (SM) represents a relatively small part of the overall hydrologic cycle, it is20

perhaps the most important part to human survival. SM is the source of water for all vegetation on

Earth. It also plays an important role in water and energy exchanges between the land surface and

atmosphere. Hydrologically, SM is an indicator of drought or lack thereof, and antecedent moisture

conditions are important determinants of runoff response to rainfall events. Thus, SM is a vital part

of any terrestrial ecosystem analysis as well as land surface and climate models.25

Much of the recent efforts particularly in remote sensing of SM estimation have been focused on

surface or near surface observations (0-5 cm); however, moisture throughout the root zone can be just

as prevalent. The moisture within the root zone exerts a controlling influence on land-atmospheric

fluxes of energy and water under vegetated condition. The actual distribution of root zone moisture

is a function of vegetation canopy root density and distribution (Mishra et al., 2013).For this reason,30

SM at shallow depths (< 100 cm) is known to be extremely variable both as functions of time (Starks

et al., 2003) and depth (Scott et al., 2003).

Although several approaches have been proposed for determining SM profiles, most require either

observed profile data so that a regression or inversion model can be developed (Arya and Richter,

1983; Kondratyev et al., 1977; Kostov and Jackson, 1993; Srivastava et al., 1997; Singh, 1988).35

A common approach is to estimate surface or total root zone moisture using remote sensing and

then assimilate those observations into a land surface model (LSM) to determine root zone SM

distributions. The NASA Land Information System (LIS) contains a suite of land surface models

and data assimilation tools for this purpose and are commonly utilized as a source of SM data.

However, LSMs have their own issues (e.g., bias, ancillary data requirements, computational ex-40

pense) so it would be advantageous if SM profiles could be deduced directly from satellite observa-

tions without the use of a LSM or the availability of in-situ profile data. In-situ SM profile data are

only available generally at a few locations over the CONUS for any given period of time. In addition,

a number of field campaigns over the years have produced high-density observations, but only for

very short time periods. In-situ data suffer from the fact that they are site specific and may not be45

representative of wider surrounding regions. Thus, they are of limited value for modeling or opera-

tional purposes. This deficiency has led to the increased reliance on remote sensing to retrieve SM.

However, remotely sensing SM estimates alone cannot deduce the distribution of moisture within a

soil column.

Due to the inherent complexities involved with the movement of SM in the column, several studies50

have argued that SM uncertainties and complexities can be best described through the description of

its entropy (Mays et al., 2002; Pachepsky et al., 2006; Singh, 2010a). The maximization of entropy

characterizes the diffusion of moisture through the soil column over a period of time. The principle

of maximum entropy (POME) states that if the inferences had to be drawn from incomplete infor-

mation then they should be based on the probability distribution with maximum entropy allowed55
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by the a-priori information. Al-Hamdan and Cruise (2010) used the maximum entropy formula-

tion of Jaynes (Jaynes, 1957a,b) based on the Shannon entropy (Shannon, 1948) to formulate the

POME-based SM profile development algorithm.Subsequent to its introduction the POME method

has been adopted and extended by several authors (e.g., Mishra et al., 2015, 2013; Pan et al., 2011;

Singh, 2010b). Initial studies by Al-Hamdan and Cruise (2010) and Singh (2010b) compared their60

results against experimental data under laboratory settings. However studies by Pan et al. (2011)

and Mishra et al. (2013) involved application and validation of the POME model outside laboratory

environment. More recently, Mishra et al. (2015) provided extensive validation of the profiles de-

veloped using the POME approach against a U.S. Department of Agriculture Soil Climate Analysis

Network (SCAN) site located in northern Alabama, as well as with a detailed mathematical model65

of moisture movement in the soil profile.

The objective of this study is to develop SM profiles from remotely sensed data over the south-

eastern U.S without the aid of observed profile data or the use of a LSM. The approach utilizes

both microwave (MW) data (to supply surface estimates) and thermal infrared (TIR) estimates (for

total root zone moisture) within the POME profile methodology. The POME model requires only70

the upper and lower boundary conditions, as well as the mean moisture content, as input. The sur-

face and mean moisture contents can be supplied by satellite estimates, whereas the lower boundary

condition (∼100-200 cm) is often fairly stable and can be parameterized. This makes the POME

modeling approach quite feasible when working with remotely sensed SM datasets.

Within this study, before the SM profiles can be calculated, the disparity in spatial resolution75

between the MW and TIR data must be resolved. MW data are available at much coarser spatial

resolutions (25-40 km) than are TIR data (1-10 km). The approach selected here is to downscale

(or disaggregate) the coarse MW data to the resolution of the TIR data. This is accomplished via an

evaporative efficiency method proposed by Merlin et al. (2012, 2013, 2015).The spatial resolution

selected is 4.7 km (∼5 km hereafter) that corresponds to the operational scale of the NWS Multi-80

sensor Stage IV precipitation product (Lin and Mitchell, 2005). This facilitates the future integration

of the profiles into operational land surface, hydrologic, or agricultural models. It is quite possible

that these models could be improved through assimilation of observed SM profiles, especially in

regions of the world where climate information is sparse.

As stated earlier, the overall objective of the study is to determine the efficacy of SM profiles85

developed directly from remotely sensed data only, without the use of a LSM or ancillary data. The

study consists of three parts: (a) a multiyear disaggregation of the coarse resolution MW surface SM

to the 5-km spatial resolution; (b) calculation of SM profiles for each 5-km grid using the POME

approach with the downscaled MW data serving as the surface boundary condition and TIR estimates

providing mean SM; (c) validation of the SM profiles against a gridded LSM and in-situ data; and90

(d) error analyses including evaluation of downscaled MW surface SM estimates against LSM and

in-situ data. Two independent data sources are used for comparison and validation purposes, using
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ground observations from 10 available NRCS SCAN sites and gridded 3-km Noah LSM SM data

aggregated to the 5-km spatial resolution.

2 Study Area and Data Sources95

2.1 Study Area

The study area for this research is the southeastern U.S consisting of four states including Alabama,

Georgia, Florida and South Carolina (Fig. 1). The southeastern U.S. represents a subtropical humid

climate that typically has relatively hot and humid summers and precipitation that is generally evenly

distributed throughout the year. The mean annual precipitation is 1250-1500 mm based on the 1981-100

2010 period. Mean annual temperature ranges from 14oC in Northern Alabama to nearly 24oC in

southern Florida. The region is roughly 31% forested; 54% shrubs; 12% agricultural land and rest of

the area is covered by urban (1.9%), savanna (1.8%), water etc. according to Moderate Resolution

Infrared Spectroradiometer (MODIS) 2008 land cover data aggregated to 5-km spatial resolution.

The majority of the soils (nearly 80%) at the surface are classified as sand with loamy sand and105

sandy loam, as determined from the Soil Information for Environmental Modeling and Ecosystem

Management (Miller and White, 1998). These soils are known to have relatively low water holding

capacity that can lead to great temporal variation in upper level (1-10 cm) SM conditions and rel-

atively frequent short-term droughts (1-4 week period) during growing seasons in various parts of

the region (McNider et al., 2014).The Southeastern U.S. is one of the more data rich regions of the110

world (climate and soils data) providing ample opportunity for calibration as well as validation of

results.

2.2 Data Sources

2.2.1 Microwave Surface SM

Over the past several years, much attention has been given to the use of MW sensors to measure115

surface SM remotely. The use of the MW band is the only remote sensing technique that is physi-

cally based as well as quantitative (Kondratyev et al., 1977; Schmugge et al., 1992). Furthermore,

due to their all-weather and day/night capabilities, MW sensors are widely used globally and offer

high temporal data availability. This study employs one of the more extensively used and validated

MW-based SM data sets from the Advanced Microwave Scanning Radiometer (AMSR-E) mission120

operating in the X-band frequency from 2002-2011. The data were obtained from the National Snow

and Ice Data Center (NSIDC) and were generated using the so-called “standard” NASA retrieval al-

gorithm - an iterative multichannel inversion process to deduce surface moisture conditions through

comparison of observed and computed brightness temperatures (Njoku et al., 2003). It is primarily

impacted by vegetation cover and water content, as well as soil temperature and moisture (Cho et al.,125
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2015). The daily Level-3 AMSR-E SM X-band product (AELand3) (Njoku, 2004)from the ascend-

ing (1:30 pm local time) overpass was collected for this study. The ascending overpass was selected

to be consistent with the ALEXI retrievals, which are forced with morning and local noon skin

temperatures obtained from the Geostationary Operational Environmental Satellite (GOES) Imager

instrument. The Level-3 AMSR-E SM estimate is a 25-km gridded data product.130

2.2.2 Thermal Infrared - ALEXI

Techniques to retrieve root-zone moisture that rely upon TIR data are inferred from surface energy

fluxes typically retrieved at relatively high spatial resolutions. TIR-based evapotranspiration (ET)

estimates are generally related to LST and vegetation cover fraction. Models such as the Surface

Energy Balance System [SEBS: (Su, 2002)];the Surface Energy Balance Algorithm for Land [SE-135

BAL: (Bastiaanssen et al., 1998)]; and the Two Source Energy Balance [TSEB: (Norman et al.,

1995)] exploit this relationship with varying degree of complexities. A two-source based Atmo-

spheric Land EXcahnge Inverse (ALEXI) (Anderson et al., 1997, 2007; Hain et al., 2011) model has

been implemented over the continental U.S. and used as a source of surface energy fluxes (Anderson

et al., 1997; Norman et al., 2003); evapotranspiration (ET) (Anderson et al., 2007, 2011b); SM (Hain140

et al., 2011; Mishra et al., 2013); and an Evaporative Stress Index (Anderson et al., 2011a, 2013). A

continental-scale implementation of the ALEXI model was used in this study to estimate instanta-

neous energy fluxes. ALEXI fluxes are available at approximately 4.7 km (0.04o) spatial resolution

on a daily time-step since the year 2000 over the continental U.S., generated using 15-min resolution

GOES 10.7 µm channel TIR data. ALEXI estimates of actual ET and SM are used in this study. A145

known drawback of TIR-based methods is that they are limited to cloud-free conditions.

2.2.3 In-situ Observations

The study area contains 25 operational U.S. Department of Agriculture SCAN (Schaefer et al., 2007)

monitoring stations. In addition to meteorological observations such as precipitation, air tempera-

ture, relative humidity etc. these monitoring stations measure soil temperature and moisture content150

primarily at depths of 5, 10, 20, 50 and 100 cm at hourly and daily time steps. The SCAN sites use

Hydra Probes (Stevens) to observe SM conditions (Schaefer et al., 2007). Most of these 25 SCAN

sites are located in northern and central Alabama. Ten sites with the most consiteant data availability

and with good geographical distribution across the study area were employed for the comparison.

The SM data were obtained from http://www.wcc.nrcs.usda.gov/scan/. Table-1 lists the major land155

cover type (at 5 km scale) along with soil characterics at these ten sites.

2.2.4 Noah Soil Moisture

The Noah SM product generated with the NASA LIS (Kumar et al., 2006) framework was selected

as a comparison dataset. The Noah model is driven by actual meteorological forcing (what forc-
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ing did you use), and thus serves as a valuable comparison dataset by which to measure the MW160

downscaling and profile results. While Noah SM also has biases and uncertainties, the comparisons

reveal regional patterns of agreement (disagreement) with the remote sensing estimates. In the event

that the POME profiles prove to be superior to the LSM in certain instances, this would indicate

that the LSM (or other hydrologic or agricultural models) might be improved through assimilation

of the remotely sensed SM profiles. The comparison assumes that errors in the Noah model are165

independent from the errors associated with MW and TIR based estimates. Noah SM estimates are

available in four layers: 0-10; 10-40; 40-100 and 100-200 cm depths. It should be noted that there

are inconsistencies in the surface layer depths between Noah and MW data: The surface layer in

the Noah model is the top 10 cm of the soil column, while the downscaled MW represents the top

2-2.5cm. The Noah 3-km SM products were aggregated to 5-km to be product consistent with the170

downscaled MW product.

Additionally, the NLDAS2 gridded temperature forcing data (0.125o resolution) were also utilized

for computing of potential evapotranspiration (PET). The NLDAS2 forcing data was available from

NASA Land Data Asssimilation System (https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php). The

GTOPO30 digital elevation model (DEM) was used as source of elevation information for the study175

area. The GTOPO30 product was made available by the U.S. Geological Survey’s EROS Data Cen-

ter (https://lta.cr.usgs.gov/GTOP30). The 1-km gridded soil characteristic data for the study area

was available from the Soil Information for Environmental Modeling and Ecosystem Managment

(Miller and White, 1998).

3 Methodology180

3.1 ALEXI Retrievals

3.1.1 Surface Evaporation

A time differential application of ALEXI to monitor 10.7 µm brightness temperatures that constitute

the land surface temperature (LST) rise, specifically from morning to local noon which are used to

diagnose the partitioning of net radiation into sensible; latent and soil heat fluxes. The rise in LST185

from morning to near-noon is known to be correlated with the moisture content of the soil: com-

pared to a dry land surface, wetter surfaces warm slowly, thus requiring more energy for evaporating

surface moisture (Hain et al., 2011; Kustas et al., 2001). The soil heat conduction flux is parame-

terized as a function of net radiation following (Santanello and Friedl, 2003); latent heat from the

canopy (transpiration) is estimated assuming a non-stressed modified Priestley-Taylor (Priestley and190

Taylor, 1972) approach. Finally, the soil (surface) latent heat is the residual of the canopy latent

heat and latent heat of the soil and canopy system: LEs = LEsys−LEc. Here LEs, LEsys and

LEc represent the latent energy of surface, system and canopy, respectively. Detailed model descrip-
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tion and derivation is provided in earlier studies (Anderson et al., 2007; Hain et al., 2011). If the

residual is negative [an indicator of condensation, an unlikely process during daytime (Hain et al.,195

2011)] then the canopy transpiration is relaxed iteratively until it reaches zero. The surface evapora-

tion from ALEXI is used to compute the soil evaporative efficiency (SEE) function required for the

disaggregation (described in section 3.2).

3.1.2 Mean Root Zone Moisture Retrieval

The ratio of actual to potential ET (fPET ) is functionally related to the fraction of available water200

(fAW ). Multiple relationships between the ratios of PET and available water have been proposed

with varying degrees of success including linear; non-linear; piecewise linear or threshold (Hain

et al., 2009). Large-scale applications prefer simpler linear functions as sensitivity to SM is constant

and thus relatively less detailed soil characteristics are required (Song et al., 2000). In this study a

linear relationship proposed by Wetzel and Chang (1987) is employed: fPET = 0.85 ∗ fAW . The205

resulting ALEXI SM estimation is given as:

θALEXI = (θfc− θwp)(0.85 ∗ fAW ) + θwp (1)

Here θfc and θwp represent the field capacity and wilting point of the soil, respectively. It is

argued that the SM retrieval from diagnosed evaporative fluxes is reasonable when the SM content

is within the limits of wilting point and field capacity (Hain et al., 2011). ALEXI retrievals can be210

interpreted based on fraction of vegetation cover (fc) as either surface moisture content (fc < 0.3);

predominantly root-zone moisture (fc > 0.75) or a composite of both surface and root-zone moisture

for fc between these limits. In this study Priestly-Taylor PET was used with ALEXI actual ET to

compute fAW .

3.2 Surface Disaggregation215

The spatial resolution of the TIR- based ALEXI SM estimates are roughly 5 x 5 km. Thus, in order to

utilize them in conjunction with the AMSR-E MW data, the coarse resolution MW surface estimates

must be downscaled to match the ALEXI spatial scale. A physically based, semi-empirical soil

evaporative efficiency (SEE) model in combination with a first order Taylor series expansion around

the coarse resolution SM is used to map surface evaporative fluxes to SM content at finer resolutions.220

The SEE disaggregation approach has become very popular recently and has been employed by

several investigators at varying spatial scales and locations such as: Chen et al. (2017) [r: -0.3-0.72,

RMSE: 0.06-0.27]; Malbeteau et al. (2016) [r: 0.70-0.94, RMSE: 0.07-0.09]; Merlin et al. (2015) [r:

-0.22-0.64, RMSD:0.05-0.32]; Molero et al. (2016) [r: 0.35-0.47, ubRMSE:0.04-0.12]. In general,

the disaggregation improves agreement with in-situ observations in comparison with coarse-scale225

estimates.

The disaggregation approach decouples the soil evaporation from the top few centimeters of the
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soil and the vegetation transpiration through ET partitioning. The disaggregation algorithm used

in this study follows the concept of the DISaggregation based on Physical and Theoretical scale

CHange [DISPATCH: (Merlin et al., 2013, 2012, 2008)] model. The model accounts for aerody-230

namic resistance over bare soil in addition to soil parameters such as field capacity via the SEE.

Detailed DISPATCH algorithm derivation and description is presented by Merlin et al. (2012). Here

we represent the prominent disaggregation equation as:

SMHR = SMLR +
∂SMmod

∂SEE

(
SEEHR−

〈
SEEHR

〉
LR

)
(2)

HR and LR refer to the high and low-resolution variables, respectively. There have been multiple235

linear and non-linear relationships proposed between SEE and surface SM in the past (Budyko,

1961; Komatsu, 2003; Lee and Pielke, 1992; Manabe, 1969; Noilhan and Planton, 1989). A non-

linear model suggested by Noilhan and Planton was used in this study to guide the DISPATCH

algorithm.

3.2.1 Modified SEE Computation240

The SEE, which can be defined as the ratio of actual to potential surface soil evaporation (Fang and

Lakshmi, 2014; Merlin et al., 2010), is computed at the high resolution first, and then the SEE results

are aggregated to the respective low resolution 25 km MW scale. The studies by Merlin et al. (2010,

2012) demonstrated the use of MODIS LST, Normalized Difference Vegetation Index (NDVI) and

albedo to determine surface and vegetation temperature and evaporation. The SEE was defined as:245

= Ts,max−Ts,HR

Ts,max−Ts,min
, where Ts,max is the soil temperature at SEE = 0; Ts,min is soil temperature at SEE

= 1, and Ts,HR represents soil temperature at the high resolution grid scale.

However, in this study we employed the ratio of the estimated surface evaporation from ALEXI to

the potential evaporation to compute SEE directly at the 5-km ALEXI resolution. As mentioned ear-

lier, the two-source land surface representation in ALEXI separates surface evaporation and canopy250

transpiration. The potential surface evaporation is calculated using the Hamon PET (Hamon, 1963).

Hamon PET estimates are completely dependent upon atmospheric demand irrespective of soil and

vegetation characteristics and can act as a proxy of potential surface evaporation (PE). This repre-

sents a subtle change in the definition of SEE from the Merlin formulation in that in our case all land

cover/soil matrix combinations are weighted equally as opposed to being weighted by their assumed255

PE value as in Merlin (approximated as function of surface temperature). Since the Southeastern

U.S. is an energy limited , water rich environment (Ellenburg et al., 2016), evaporation is controlled

primarily by water availability and atmospheric demand; therefore, the effects of this change are not

expected to be large. Hamon PET estimates have been found to be comparable to radiation based

methods (e.g., Priestly-Taylor) to observed ET in the Southeastern U.S. at monthly or longer time260

scales (Lu et al., 2005), and are computed using air temperatures from the NLDAS2 forcing data sub-
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ject to terrain adjustment. Terrain adjustment of coarse resolution temperature data was performed

using a 30 m digital elevation map of the region and constant lapse rate of -6.5 K.km−1 (Cosgrove,

2003).

3.3 Profile Development265

A multi-year vertical SM profile was developed for each ALEXI grid cell using the POME model

developed by Al-Hamdan and Cruise (2010) over the study area. The application of POME to

develop a one-dimensional SM profile requires two constraints; total probability:
∫ Θ0

ΘL
f(Θ)dΘ = 1;

and the mass balance constraint:
∫ Θ0

ΘL
Θf(Θ)dΘ = Θ. Here Θ is effective saturation and Θ is the

mean moisture of the soil column; whereas Θ0 and ΘL are the upper (surface) and lower (bottom)270

effective saturation. The effective SM is given as: (θ−θwp)
(θfc−θwp) . The second constraint serves to connect

the first moment in probability space to the mean water content of the soil column in physical space.

The Shannon entropy is given by (Shannon, 1948):

I =−
∞∫

0

f(x)ln(f(x))dx (3)

where f(x) is the probability density function (pdf) of the variable. Maximizing I in Eq. (3) for the275

uniform pdf subject to the constraints, Chiu (1987) developed the 1-D profile of a variable decreas-

ing monotonically from the surface down using the method of Lagrange multipliers. Al-Hamdan

and Cruise (2010) applied the same technique to develop vertical SM profiles either increasing or

decreasing with depth from the surface:

Θ(z) =
ln[exp(λ2Θ0)± exp(1−λ1)( zL )]

λ2
(4)280

The Lagrange multipliers (λ′s) can be determined from application of the constraints and bound-

ary conditions (surface effective saturation,Θ0) and mean effective saturation value of the soil col-

umn (Θ), z is calculation depth, and L is total depth of the column. Eq. (4) is a monotonically

increasing (+ sign) or decreasing (- sign) function, representing dry (increasing from the top bound-

ary) and wet (increasing from the bottom boundary) case profiles.285

Experience has shown that not all SM profiles are monotonic as given by Eq. (4). In fact, it is

clear that some profiles can be parabolic in shape (i.e., demonstrate an inflection point), especially

immediately subsequent to rain events (dynamic case), or due to sharp changes in soil characteristics

(Al-Hamdan and Cruise, 2010; Mishra et al., 2015). These cases are identified when mass balance

cannot be kept by the monotonic assumption and thus Eq. (4) has no solution. In these cases, it is290

assumed that the inflection point is located in the soil layer with the greatest field capacity (Mishra

et al., 2015). The POME model is then applied twice; from the surface to the inflection point, and

then from the inflection point to the bottom boundary. This procedure was only required in 9% of

the profiles generated in the study.
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3.4 Temporal Compositing295

The ALEXI data are available from 2000 to present and AMSR-E from 2002-2011. For this study,

the years 2006-2010 were selected for analysis as the NRCS SCAN data was most consistently

available during this period (nearly 92%). The ascending AMSR-E SM estimates were available

64.5% of the days on an average for all scan site locations while ALEXI retrievals were available

on only 36% of the days due to cloud cover limitations. Therefore, a three day moving window300

un-weighted mean was used on AMSR-E and ALEXI retrievals to develop a composite dataset that

serves as gap filling and also tends to reduce day-to-day noise in satellite retrievals (Anderson et al.,

2011a). Compositing of the ALEXI surface ET increased the mean data availability from 36 to

nearly 63% over all scan sites and in the case of AMSR-E compositing ensured close to 100% data

availability. The availability of pixels with intersection of AMSR-E and ALEXI data more than305

doubled from 22.5% to 58.7% for the study period over all sites.

3.5 Evaluation Metrics

The remote sensing derived SM profiles developed using the POME model were compared and

validated against in-situ observations from 10 NRCS SCAN sites along with the gridded Noah LSM

SM products over the study area. The LSM was used as a basis of comparison since the long term310

goal of the project is to develop RS SM profiles that can be assimilated into hydrologic and other

land surface models. The data gaps in all three datasets restrict the possibility of time series analysis;

therefore, pair-wise temporal statistical comparisons were performed using traditional matrices such

as correlation coefficient (r), root mean square error (RMSE) and bias. It has been argued that in

cases with either the model or reference dataset being biased in mean or amplitude of fluctuations,315

the traditional RMSE tends to be an overestimation of true unbiased data (Entekhabi et al., 2010).

Therefore an unbiased RMSE in addition to traditional RMSE was also computed. The unbiased

RMSE can easily be computed by removing the bias term form the definition as:

RMSE =
√
E[(θest− θobs)2] (5)

ubRMSE =
√
E
{

[(θest−E[θest])− (θobs−E[θobs])]2
}

(6)320

ubRMSE =
√

(RMSE2−Bias2) (7)

where, E[.] is the expectation operator, θest and θobs are SM values estimated and observed (or

reference), respectively.
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To assess the quantitative error between three datasets against an unknown true observation, the

triple collocation (TC) error estimation method was employed (Stoffelen, 1998). TC has become a325

very popular technique for simultaneous error analysis of three data sets since its adaptation to SM

states by Scipal et al. (2008). The procedure is based on the assumption of linear relationships be-

tween the three estimates of the SM at a specific location and the unknown true value. The unknown

truth is eliminated from the linear error equations through subtraction and then cross multiplied to

determine the error variances of the datasets relative to each other (Gruber et al., 2016). The assump-330

tion is that the errors in the three datasets are independent and random. Multiple recent studies have

used the triple collocation method for error estimation [such as Crow et al. (2015); Yilmaz et al.

(2014); Su et al. (2014); McColl et al. (2014) etc.]. A detailed review of method derivations and

application to SM error estimation and analysis is presented by Gruber et al. (2016).

4 Results and Discussions335

4.1 Comparison with Noah LSM

For comparing SM profiles, the 5 cm layer depth POME based profiles were aggregated to the

depths consistent with the Noah LSM: 0-10; 10-40; and 40-100 cm. The analysis can be approached

from three perspectives: the surface values represent the MW downscaling; the bias represents the

ALEXI model performance as it is providing the total SM content in the root zone; and the RMSE is340

representative of the entropy model as it measures the moisture distribution within the soil column.

Figure 2 shows the statistics of multi-year temporal SM profile comparisons between the POME and

the Noah LSM for the study region. The figure shows the mean RMSE and ubRMSE tends to be

relatively stable with depth over the entire region, an indication of relative stability for the profile

developed using the POME model. As depth increased, pixel bias from 0.05-13 indicating that the345

mean SM data from the ALEXI model is positively biased compared to the Noah LSM, although

the mean bias was ≤0.05 for all layers. The overall RMSE at all layers was found to be under 0.085

in volumetric SM. Moreover < 97% pixels across the study area showed ubRMSE of less than 0.06

across all layers, indicating good agreement between the POME model and the Noah SM estimates.

Comparing Fig. 2 with the landcover map (Fig. 1), it seems that the higher correlations (r > 0.6)350

occur more prominently in the agricultural dominant portions of the study area for the top two layers

(0-40 cm). The overall correlations in the range of 0.46-0.54 across layer depths suggest that the

temporal variabilities from remotely sensed driven POME model compared fairly well against Noah

SM.

Comparison between POME and Noah SM profiles by land cover type (Fig. 3) indicate that the355

absolute bias tends to increase with depth in the savannah, shrub, and forest land covers while the

reverse is evident for the urban, grass and crop coverages. It appears that overall bias is lowest in the

savannah, forest, and agricultural land classes and since those classes (particularly forest) dominate
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the region, this naturally leads the relatively low overall region-wide bias shown in Fig. 2.

The RMSE (and ubRMSE) present an opportunity to judge the overall profile development pro-360

cess. It is clear from Fig. 3 that the RMSE improves from the surface to the middle layer and then

increases again in the bottom layer in every land cover class except shrub. The top and bottom layer

RMSE is being impacted by the boundary conditions placed on the POME integral by the MW and

the parameterized lower boundary. Clearly, the POME process tends to improve the imprecise sur-

face boundary as depth increases until the assumed lower boundary condition is encountered and365

results in deterioration of the profile RMSE.

In terms of correlation, the mid layer (10-40 cm) has the highest correlation (overall mean r =

0.54) for all land cover types with the highest mean correlation of 0.7 for crop dominated landcover.

This further demonstrates the capabilities of the ALEXI model to estimate root-zone mean SM

content in comparison to the Noah LSM. Incidentally, for most crops, the majority of the root mass370

is distributed in the top 60 cm of the soils column (Wu et al., 1999). The higher root density ensures

the strong coupling of the land-plant-atmosphere system which tends to improve the accuracy of

ALEXI in that zone. Increased correlations in the 10-40 cm layer indicate the ability of ALEXI to

mimic the temporal patterns in the root-zone consistently relative to Noah. As depth increases, the

root density is reduced and thus the coupling between land and atmosphere is also reduced. This fact,375

along with the relatively coarse parameterization of the lower boundary on the POME profile, leads

to a relative decrease in correlation at layer 3 (40-100 cm) at all land covers except for trees (forest).

The cropland showed the highest correlations with the Noah profile while keeping the RMSE and

bias consistent with other land types. Agricultural areas demonstrated correlations ranging from 0.5

to 0.7 with a mean correlation of 0.62.380

The overall analysis by layer depths appear to indicate that the profiles developed through the

POME model using the disaggregated MW and the ALEXI derived mean SM content is in good

agreement with the Noah LSM in the Southeastern U. S. and in very good agreement in agricultural

areas of the region.

4.2 Comparison with in-situ Observations385

The comparison against Noah LSM SM estimates provided useful insights towards the performance

of TIR-based SM profiles developed through the POME model. The comparisons against the LSM

specifically adds to the analysis of results as a function of land cover, yet as mentioned earlier,

the analysis does not assume that Noah is a perfect model - it may have its own errors. Therefore

multiple NRCS SCAN site in-situ observations are used for further validations. When comparing390

remotely sensed data to site specific in-situ observations, disparities in spatial scale and sensing

depth must be considered. Although some authors prefer to remove bias due to the differing scales

before comparisons are made (Brocca et al., 2011), it is also quite common to do the comparisons

without adjusting for scale, even when only one in-situ site is available (McCabe et al., 2005; Sahoo
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et al., 2008). In this study no bias corrections were performed.395

Figure 1 shows the location of each of the sites used for validation along with the underlying land

cover map. Table-1 summarizes the SCAN site characteristics, dominant land cover types and soil

characteristics at surface and 100 cm depth. Dominant land cover for sites 2009, 2114 and 2115

are predominantly savannas and forest type (hereafter referred as forest sites), whereas sites 2013,

2037, 2038 and 2113 are a mix of cropland either with savannas or shrubs (hereafter referred as400

mixed cropland sites). Only sites 2027, 2078 and 2053 (hereafter referred as cropland sites) are

predominantly cropland at the 5-km spatial resolution footprint. The crop and mixed crop sites are

shown in bold in the following text. The SCAN sites monitored SM at depths of 5, 10, 20, 50 and

100 cm. The POME based profiles are developed at 5 cm layer depth increments down to 100 cm

depth.405

The results of the developed profiles in comparison to the SCAN site observations alone are shown

in Fig. 4. First, it is evident in all the statistics except the correlation that the pattern demonstrated

in the previous comparisons persists in that the statistics often tend to improve with depth with

occasional deterioration when the lower boundary is encountered. Considering the performance

of ALEXI initially, the bias appears reasonable in most cases where the majority of instances the410

absolute bias is less than 0.1, but it appears to be best in the mixed cropland areas (mean absolute

bias of 0.07 across all depths) and worse in forested sites (mean absolute of 0.13). In fact, at seven

of the ten total sites the overall bias is considerably less than the average moisture content at the

SCAN site itself. At the two sites with the highest bias (2009 and 2027), the mean moisture content

from ALEXI was about twice the observations at all layers, indicating that the satellite estimates415

showed considerable positive bias (mean bias 0.17 and 0.13 respectively). Hain et al. (2011) pointed

out that sensitivity of the ALEXI model decreases as moisture content nears either the wilting point

or the field capacity. Both sites 2009 and 2027 had sandy soils at the SCAN site and exhibited the

lowest mean moisture content of all sites. At site 2009 with sandy soil through the column, the

mean SM content was 0.05 cm3cm−3 against the wilting point of 0.033 cm3cm−3 while 2027 site420

had sand at the surface and sandy loam (wilting point = 0.095 cm3cm−3) at the 100 cm depth and

the mean SM content was 0.12 cm3cm−3. Moreover, the site 2009 is located in a forest-dominated

region. Whereas for site 2027 (located in southwest Georgia), the higher bias in remotely sensed

observations can be attributed to additional SM content due to irrigation. Southwest Georgia is one

of the most irrigated regions of the study area. In contrast, the SCAN site observations are primarily425

governed by precipitation alone.

In the case of RMSE, half the sites showed an average RMSE of 0.1 or less. RMSE tends to be

better at the mixed land use sites, while poor performances at sites 2009, 2115 and 2027 skewed

the forest and cropland results respectively. As in the bias case, these sites demonstrated the highest

mean RMSE values (Figure-4). However, with the exception of these sites, the average RMSE was430

less than the SCAN average moisture content in all cases. The ubRMSE, on the other hand, at all
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sites was better with the overall ubRMSE for all layer depths and land cover types exhibiting an

average ubRMSE of 0.07. The ubRMSE tended to improve with depth for all cases (Fig. 5) up to

the depth of 50 cm, but showed a rise at the 100 cm depth as discussed previously. Improvements

in ubRMSE with depth indicate the ability of the POME model to converge and correct itself from435

the effects of the noisy surface boundary condition until the assumed lower boundary affected the

performance in that layer.

The correlation coefficient (r) results are interesting and do not necessarily track the other two

indices. It is clear from Fig. 4 that POME tended to perform better in agricultural land use areas

than in other environments. Similar to the bias results, correlation was poorest at forested locations.440

In all, three sites showed average correlation above 0.5 with four other sites showing a correlation

above 0.4. Two sites (2009, 2113) produced average correlations of 0.16 and 0.32 across all depths.

As discussed earlier, site 2009 is forested while 2113 is located near a water body (Lake Catoma).

Overall, the crop sites showed the highest correlations (0.51) followed by mixed crop sites (0.42),

an indication of the ability of the satellite derived surface and mean moisture content estimates to445

mimic wetting and drying patterns over time across depths.

However, the correlation consistently declined with depth at most of the agriculture and mixed

agriculture sites. The decline most often became more pronounced after the second (or sometimes

third) layer indicating that the influence of the parameterized lower boundary extends through the

lower 50 cm of the profile, at least to some extent. This phenomenon was not evident in the forest450

areas where the SM was not as variable in the lower layers.

4.3 Intercomparison of Noah, POME with In-situ Observations

The POME profiles have been compared with Noah LSM across the study region against in-situ

observations at ten locations. However, as mentioned earlier, both analyses have some limitations

either in terms of proxy ground truth (in case of LSM) and spatial representation (in-situ obser-455

vations). Therefore, in this section an intercomparison between the three datasets is performed to

assess the relative strength of each SM dataset. Figure 5 shows the time series of the SM state from

Noah LSM, SCAN observations and the POME model. Consistent with the layer depths of the Noah,

the POME profile and the SCAN observations were aggregated to 0-10; 10-40; and 40-100 cm layer

depths.460

Table-2 shows the detailed statistics of comparison between Noah LSM SM, in-situ observations

and POME profiles at each SCAN site location. The results are further summarized across all sites

in Figure-6. The overall results show that the satellite-based and LSM SM estimates are reasonably

comparable based on error statistics of ubRMSE (0.05 vs 0.04) and absolute bias (0.08 vs 0.07). For

the surface layer (0-10 cm) comparisons, the Noah correlations are superior to the POME model465

(r = 0.75 vs 0.54), although in several cases the Noah correlations decrease vertically through the

soil column to the point that the two approaches are much more comparable (Fig. 6). This case
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does not show the steep decline in correlation through the POME profiles as before, indicating that

amalgamation of the lower layers into one 60 cm layer has dampened that effect. In terms of mean

bias across layers, the POME model is superior in four cases, Noah is superior in four cases and470

in the other two cases (2115 and 2053) the two models perform the same. In terms of ubRMSE,

the POME is superior to Noah at three locations while at other six locations the difference is within

0.01 (in cm3cm−3). Overall, the average statistics across all depths and all sites, the Noah/SCAN

average RMSE was 0.09 in comparison to the POME RMSE of 0.10 against ground based SCAN

observations. The unbiased RMSE between Noah and SCAN was 0.04, and for the POME it was475

0.05 in volumetric SM. Figure 6 shows that the Noah LSM tended to become less accurate with

depth while the POME generally showed the reverse.

The three data sets can be further compared through TC analysis. TC has the advantage that

the SCAN observations are treated equally with the LSM and POME as just another estimate of

the true SM state. The analysis is performed for three layers to be consistent with the LSM model480

configuration (Fig. 7). The surface results (0-10 cm) showed that in most instances the SCAN

observations are closer to the true SM compared to the Noah and POME data; however, the latter

two data sets also show high coefficient of determination (R2) values at several sites. The middle and

bottom layer results appear to indicate that the Noah LSM is superior (with 5 and 9 instances ofR2 >

0.8, respectively), while the SCAN observations and the POME model track each other fairly well485

with 6 and 5 instances, respectively, ofR2 > 0.4 for the POME and 5 and 4 such instances for SCAN

observations. The Noah results may be problematic in that the basic assumption of TC analysis is

that the errors are random and unrelated. In the case of a LSM such as Noah, the deterministic

SM equation (e.g., Richards Equation) governs the movement of moisture through the column and

some of the random errors are eliminated. This would not affect the surface layer, which is governed490

by precipitation and surface evaporation. Thus, the errors in the LSM at the deeper layers may

be dampened. The conclusion may be that the LSM cannot be fairly evaluated through a purely

stochastic analysis such as TC.

4.4 Error Characterization

The developed profile results are impacted by the boundary conditions applied to the POME as the495

integral serves to transition the profile between the upper and lower boundary conditions. The upper

boundary is associated with the MW surface SM estimates while the lower boundary was assumed

for this study and potentially could be parameterized or used as a calibration parameter. In addition,

the mean SM estimated from ALEXI determines the total mass to be distributed. Earlier studies by

Al-Hamdan and Cruise (2010) and Mishra et al. (2015) showed that the POME model is capable500

of producing profiles with significant accuracy with mean absolute errors in the range of 0.5-3.0%

for known input conditions. However, in this study inputs to the POME model are derived from

remotely sensed measurements, in addition to a parameterized bottom boundary condition. Hence,
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profile errors may be characterized in terms of errors in input parameters.

Figures-8(a) and (b) shows the sensitivity of the profile in terms of bias and RMSE to variations505

in the mean and surface constraints. From Figure-8(a) it is clear that, even if the surface boundary

condition is off by 50% (in effective SM), the overall profile RMSE and bias is less than 0.35 (in

effective SM), and the maximum possible deviation in the surface boundary results in bias and

RMSE of 0.62 and 0.67 respectively. The sensitivity study of the mean moisture content (Figure-

8(b)) shows that the bias and RMSE of the profile (in terms of effective SM) are linearly related to510

the deviations in the assumed mean. Further, Figure-8 indicates that the profile is more sensitive to

errors in the mean than it is to deviations in the surface boundary condition.

4.4.1 Effect of Disaggregation of AMSR-E MW Data

Figure-8 shows that the POME profile is sensitive to the surface boundary conditions. In this study

these conditions are provided by AMSR-E; therefore, it is instructive to examine the relative accu-515

racy of the downscaled MW data. To that end, the AMSR-E surface SM before and after disaggrega-

tion is compared to both the Noah LSM and the in-situ SCAN data to quantify the effect of the SEE

downscaling algorithm. The results from a temporal analysis between coarse and downscaled (fine)

resolution MW surface SM with the Noah LSM surface is shown in Figure-9 for the study domain.

The figure shows that the generally negative bias of the original AMSR-E data (overall mean = -0.08)520

when compared to the Noah LSM was transformed by the disaggregation to a positive bias in the

eastern half of the study area although the overall bias remained slightly negative. The positive bias

in the eastern zone was largely in the 0.04 to 0.13 range. It is also apparent that this same area exhib-

ited a substantial increase in correlation between the downscaled MW and Noah data. Comparing

Fig. 9 to the land cover image in Fig. 1, it can be see that the increase in correlation was largely in525

the agricultural bands in the southwestern Georgia leading into southeastern Alabama. However, a

few areas, such as extreme southwestern and east-central parts of Alabama, showed degradation in

correlation on downscaling. The land cover map shows that these areas are generally forested. Over-

all the temporal correlation (r) showed a modest increase from 0.21 to 0.25 with downscaling for the

study area indicating that downscaled AMSR-E is slightly more comparable to Noah LSM surface530

SM. Perusal of the figure shows that the poor results in Florida and along the eastern seaboard are

primarily responsible for the low correlations. It also demonstrates the fundamental property that the

downscaling process will be compromised in areas where the original MW data was of exceptionally

poor quality to begin with.

It is difficult to determine the impact of the disaggregated MW surface SM estimates on the535

profiles compared to the LSM. First, the statistics shown in Fig. 9 are for the sensing depth of

the raw AMSR-E data (0-5 cm) while the relatively better statistics shown in Fig. 2 are for the top

layer corresponding to the Noah LSM (0-10 cm). This disparity in depth is undoubtedly affecting

the results. The introduction of the mean SM from ALEXI also affects the near surface layer in
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the POME profile since mass balance must be maintained throughout the soil column. In any case,540

comparison of Fig. 2 and 9 shows that the profile statistics are considerably improved compared to

the MW surface values and thus the noise in the MW data has a minimal effect when compared to

the Noah LSM.

The results of the comparison with the SCAN sites are perhaps more instructive and are given

in Table-3 below. The table shows that in terms of correlation, the disaggregated data were better545

related to the in-situ data than were the original coarse scale MW data (r = 0.53 vs r= 0.31). This

result was particularly evident at the agricultural SCAN sites (r = 0.64 vs r = 0.42). These results

were obtained at a slight cost in the bias (bias=0.07 vs bias= -0.02) and RMSE (RMSE=0.1 vs

RMSE=0.12), although the difference was not as great in unbiased RMSE. In the case of Table-3,

the SCAN depth is the same as the MW so comparisons are apt. In cases of relatively high bias in550

the MW data (e.g., sites 2009, 2114, 2053, 2078) this error is introduced into the POME profile.

Figure 8 shows that errors in the surface boundary of about 0.1 translate to bias and RMSE in the

profile of about 0.05. It appears from Table-3 that at the sites demonstrating the consistently higher

bias and RMSE, the error in the surface boundary could be responsible for one third to one half of

that total.555

4.4.2 Effect of Mean SM Inputs

The mean SM content within soil column in this study obtained from TIR based ALEXI model

served as one of the two remotely sensed input parameters for the POME model. Therefore the

mean SM content retrieved from the ALEXI model is compared with the Noah LSM. The results of

the temporal analysis between the two datasets are shown in Fig. 10. The overall bias between the560

two datasets is 0.04. The overall RMSE is 0.08 with ubRMSE of 0.04 indicating that the mean SM

content of the two datasets is similar. In terms of correlation coefficient, the root zone correlation

nearly doubled (r = 0.49) compared to the surface correlations (Figure-9). Further, comparison of

Fig. 10 with Fig. 1 reveals that, similar to the surface SM analysis, the mean SM content with the

highest correlations (r ≥ 0.5) are observed mostly in agriculture-dominated areas.565

Figure 8(b) shows that the translation of the error in the mean SM content to errors in the POME

profile is linear, so an error of 0.04 in the ALEXI mean compared to the LSM would translate into

a similar error in the computed profile. Examination of column 2 (NP) in Table-2 above shows that

this error represents the majority of the errors in the computed POME profiles compared to the LSM.

5 Conclusions570

This study evaluated the feasibility of linking downscaled MW surface SM with TIR root zone

estimates to develop entropy-based vertical SM profiles. The SM profiles (including surface values)

were compared to in-situ data at the Southeastern U.S. as well as the Noah LSM within the NASA
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LIS. Initial results are encouraging. The SEE disaggregation method of Merlin et al. (2012), guided

by high resolution TIR estimates from the ALEXI model, showed promise when compared to the575

in-situ and modeled estimates in a humid semi-tropical region of the U.S. The POME generated SM

profiles generally compared favorably with the SCAN site profiles and the Noah LSM. In summary:

– When the Noah LSM and the POME profiles were compared to the in-situ data in terms of

bias, the POME-generated profiles were clearly superior in at four sites, the LSM was superior

at four sites and the two methods were the same at the other sites. The maximum correlation580

in the range of 0.4-0.65 was observed in agriculturally dominant areas. Further the highest

correlations were found at the depth of 10-40 cm, coinciding with the maximum root density

for crops and thus offering a better coupling between land and atmosphere. The ALEXI model

was able to pick the wetting and drying trends in the root-zone consistently.

– Compared to in-situ observations, the bias and RMSE of the Noah model often tended to585

degrade vertically with depth while the reverse was evident in most of the POME profiles. This

characteristic of the remote sensing driven POME method seems to imply that profiles from

land surface models could be improved in terms of bias and RMSE through the assimilation

of the remotely sensed profiles.

– TC analysis revealed that the POME and observed SCAN site observations tracked well, while590

the LSM appeared to show less variability, possibly due to the use of the deterministic Richards

Equation to model SM movement through the soil column.

Error analyses revealed that the majority of the error in the POME generated profiles was due to

error in the mean SM deduced from the ALEXI retrievals and the parameterized lower boundary

condition. The SEE downscaling procedure increased the correlation of the surface SM compared595

to both the LSM and the SCAN sites, especially in agricultural areas where correlations in the

range of 0.5-0.8 were achieved. In the meantime, the overall bias was reduced by a factor of 4 and

the RMSE was only slightly increased (0.09 to 0.10). Downscaling generally was less effective in

locations where the AMSR-E demonstrated positive bias and appeared to lose effectiveness as the

bias increased. MW surface observations can be contaminated when a high percentage of the pixel600

is dominated by water, as near large streams or lakes or in the near coastal region. Dense vegetation

also tends to degrade the MW results. Overall, analysis revealed that the surface SM estimates

accounted for, at most, for one third to one half of the error in the SM profiles and for most cases,

the mean SM and the parameterized lower boundary accounted for the majority of the error. Recent

advances such as the L-band sensor aboard the SMAP mission, offers the potential for even better605

correlated MW data. In addition, further analysis of the lower boundary condition parameterization

could improve the profiles, particularly in the lower layers. For example, Mishra et al. (2013) used

POME generated profiles to update SM within a crop model using the lower boundary condition from
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the model itself. If sufficient ground truth data are available, calibration could be accomplished, or

the lower boundary could be set as a function of soil properties in the bottom layer of the profile.610

The relatively sparse (5-10 day recurrence interval) availability of the ALEXI TIR-based SM

retrieval is the major weakness of the procedure and necessitated compositing of the data into three

day running means. However, the issue is a function of the semi-tropical humid climate of the

Southeastern U.S. Drier regions of the world would not suffer as much from this issue. Thus it is

possible that the proposed method could be employed to deduce vertical SM profiles in regions of615

the world where observed climate data are scarce or insufficient to drive ecological models. These

profiles could be assimilated into the models to help correct for model bias due to the poor climate

inputs.
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Tables

Table 1. SCAN site 5 km dominant land cover (MODIS 2008) and soil characteristics (SCAN) at surface and

depth of 100 cm [S-Sand; L-Loam; C-Clay and Si-Silt]

SCAN Lat/Lon Land cover Soil Type (SCAN)

Site Surface 100cm

2009 30.3/-84.4 Savannas/Mix Forest S S

2013 33.8/-83.4 Crop/Savannas SL C

2027 31.5/-83.5 Cropland S SL

2037 34.3/-79.7 Crop/Shurbland - -

2038 32.6/-81.2 Crop / Savannas - -

2053 34.9/-86.5 Cropland SiCL SiC

2078 34.9/-86.6 Cropland SiCL C

2113 34.2/-86.8 Crop/Savannas L SCL

2114 32.6/-88.2 Savannas SCL CL

2115 32.4/-85.7 Savannas LS SC
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Table 2. Results of temporal comparisons in absolute bias, RMSE, ubRMSE and correlation at 10 sites between

the developed profile and Noah SM profiles against SCAN observations at 0-10; 10-40 and 40-100cm depths

[NP - Noah vs POME; SP - SCAN vs POME; and NS – Noah vs SCAN]

Site
Bias RMSE ubRMSE Correlation

NP SP NS NP SP NS NP SP NS NP SP NS

2009 0.02 0.13 0.11 0.05 0.14 0.12 0.04 0.04 0.03 0.12 0.23 0.56

0-10
cm

2014 0.00 -0.10 -0.10 0.06 0.13 0.11 0.06 0.07 0.03 0.54 0.50 0.85

2013 0.01 0.15 0.14 0.07 0.16 0.14 0.07 0.06 0.00 0.50 0.54 0.72

2027 0.09 0.19 0.10 0.10 0.20 0.11 0.06 0.07 0.05 0.64 0.49 0.70

2053 0.05 0.03 -0.02 0.07 0.06 0.04 0.05 0.06 0.03 0.77 0.75 0.85

2078 0.05 0.03 -0.02 0.09 0.09 0.05 0.07 0.08 0.05 0.73 0.69 0.72

2113 0.00 0.02 0.03 0.06 0.08 0.06 0.06 0.08 0.05 0.41 0.51 0.86

2037 0.06 0.08 0.02 0.09 0.10 0.04 0.07 0.06 0.03 0.40 0.63 0.72

2038 0.02 0.02 0.16 0.06 0.06 0.04 0.05 0.05 0.04 0.34 0.37 0.62

2013 0.04 0.07 0.23 0.07 0.09 0.04 0.05 0.05 0.03 0.59 0.67 0.88

2009 0.06 0.18 0.12 0.08 0.19 0.13 0.05 0.03 0.05 0.21 0.17 0.37

10-40
cm

2014 0.02 -0.14 -0.16 0.05 0.14 0.17 0.04 0.04 0.06 0.69 0.60 0.78

2013 0.00 0.04 0.04 0.04 0.06 0.05 0.04 0.04 0.03 0.52 0.51 0.80

2027 0.06 0.14 0.08 0.07 0.14 0.09 0.04 0.05 0.04 0.70 0.56 0.63

2053 0.00 0.03 0.03 0.05 0.07 0.06 0.05 0.06 0.05 0.67 0.51 0.74

2078 0.01 -0.06 -0.06 0.05 0.07 0.09 0.05 0.05 0.06 0.69 0.56 0.56

2113 0.04 0.03 -0.01 0.08 0.06 0.03 0.06 0.05 0.03 0.37 0.37 0.91

2037 0.07 0.10 0.02 0.08 0.10 0.03 0.03 0.03 0.02 0.57 0.55 0.78

2038 0.08 -0.01 -0.09 0.09 0.04 0.10 0.05 0.04 0.04 0.44 0.39 0.55

2013 0.07 0.05 -0.02 0.10 0.08 0.04 0.07 0.06 0.03 0.29 0.27 0.88

2009 0.06 0.18 0.12 0.08 0.19 0.13 0.05 0.03 0.05 0.21 0.17 0.37

40-100
cm

2014 0.02 -0.14 -0.16 0.05 0.14 0.17 0.04 0.04 0.06 0.69 0.60 0.78

2013 0.00 0.04 0.04 0.04 0.06 0.05 0.04 0.04 0.03 0.52 0.51 0.80

2027 0.06 0.14 0.08 0.07 0.14 0.09 0.04 0.05 0.04 0.70 0.56 0.63

2053 0.00 0.03 0.03 0.05 0.07 0.06 0.05 0.06 0.05 0.67 0.51 0.74

2078 0.01 -0.06 -0.06 0.05 0.07 0.09 0.05 0.05 0.06 0.69 0.56 0.56

2113 0.04 0.03 -0.01 0.08 0.06 0.03 0.06 0.05 0.03 0.37 0.37 0.91

2037 0.07 0.10 0.02 0.08 0.10 0.03 0.03 0.03 0.02 0.57 0.55 0.78

2038 0.08 -0.01 -0.09 0.09 0.04 0.10 0.05 0.04 0.04 0.44 0.39 0.55

2013 0.07 0.05 -0.02 0.10 0.08 0.04 0.07 0.06 0.03 0.29 0.27 0.88
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Table 3. Statistical comparison before and after disaggregation of coarse resolution MW SM against SCAN

observations [r – correlation coefficient; N – number of days data points was available; maximum possible N =

1825];*non-significant correlation using two-tailed t-test at 99% CI

Mean SM SCAN/MW(25km) SCAN/MW(5k)

Site
SCAN MW MW N Bias RMSE ubRMSE r Bias RMSE ubRMSE r

(25k) (5k)

2009 0.06 0.18 0.19 841 0.12 0.12 0.02 -0.12* 0.13 0.14 0.04 0.17

2014 0.26 0.15 0.19 1055 -0.11 0.14 0.09 0.30 -0.07 0.12 0.09 0.47

2013 0.08 0.15 0.25 1103 0.08 0.09 0.04 0.42 0.17 0.19 0.08 0.60

Mean 0.03 0.12 0.05 0.22 0.08 0.15 0.07 0.42

2027 0.08 0.13 0.29 1241 0.05 0.06 0.03 0.48 0.21 0.22 0.08 0.50

2053 0.24 0.14 0.32 1160 -0.10 0.13 0.08 0.43 0.08 0.10 0.06 0.74

2078 0.25 0.14 0.31 1080 -0.12 0.13 0.05 0.34 0.06 0.10 0.08 0.68

Mean -0.06 0.10 0.05 0.42 0.12 0.14 0.07 0.64

2113 0.20 0.14 0.18 1014 -0.06 0.12 0.10 0.44 -0.02 0.10 0.09 0.47

2037 0.16 0.14 0.21 1157 -0.02 0.06 0.05 0.11 0.06 0.10 0.09 0.62

2038 0.14 0.16 0.16 1067 0.02 0.05 0.04 0.45 0.02 0.06 0.06 0.31

2013 0.21 0.15 0.23 1218 -0.06 0.09 0.06 0.21 0.02 0.05 0.05 0.55

Mean -0.03 0.08 0.06 0.26 0.02 0.08 0.07 0.53

Overall Mean -0.02 0.10 0.06 0.31 0.07 0.12 0.07 0.53

Figures
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Fig. 1. Overview of study area showing location of all active SCAN sites. The dark blue circles indicate sites

with most consistent data availability and are being used for comparison and validation in this study. The right

figure shows a land cover map (MODIS-2008) for the study area.
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Fig. 2. Map of bias, RMSE, unbiased RMSE and Correlation over multiple years (2006-2010) at different layer

depths: top panel: 0-10cm; middle panel: 10-40cm and bottom panel: 40-100cm.
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Fig. 3. Comparison of Noah and POME SM profiles at multiple layer depths by Land Cover across Southeast

United States

Fig. 4. Statistics at SCAN sites showing bias, Correlation, RMSE and ubRMSE between scan observations and

POME SM profiles at multiple depths.
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Fig. 5. Time series of soil moisture condition at 10 NRCS SCAN sites from the POME model (Blue); Noah

LSM (green) and in-situ observations (red) at three layer depths (2006-2010)
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Fig. 6. POME/ALEXI profiles and Noah statistics at all SCAN sites compared against observations averaged

across layer depths

Fig. 7. Triple collocation analyses of SM profiles from Noah (green), POME (blue) and in-situ observations

(red) at scan site locations at the depths of 0-10; 10-40 and 40-100 cm
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Fig. 8. POME model sensitivity to (a) boundary condition; (b) sensitivity to profile mean input towards profile

Bias and RMSE in terms of effective SM.

Fig. 9. Map of Southeast United States demonstrating temporal statics in bias, RMSE, ubRMSE and correlation

between coarse (top panel) and fine (bottom panel) resolution AMSR-E (MW) and Noah LSM surface SM

(2006-2010)
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Fig. 10. Map of temporal statistics between root zone ALEXI and Noah SM (2006-2010).
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